Undercover: a primal MINLP heuristic exploring a largest sub-MIP
نویسندگان
چکیده
We present Undercover, a primal heuristic for nonconvex mixed-integer nonlinear programming (MINLP) that explores a mixed-integer linear subproblem (sub-MIP) of a given MINLP. We solve a vertex covering problem to identify a minimal set of variables that need to be fixed in order to linearize each constraint, a so-called cover. Subsequently, these variables are fixed to values obtained from a reference point, e.g., an optimal solution of a linear relaxation. We apply domain propagation and conflict analysis to try to avoid infeasibilities and learn from them, respectively. Each feasible solution of the sub-MIP corresponds to a feasible solution of the original problem. We present computational results on a test set of mixed-integer quadratically constrained programs (MIQCPs) and general MINLPs from MINLPLib. It turns out that the majority of these instances allow for small covers. Although general in nature, the heuristic appears most promising for MIQCPs, and complements nicely with existing root node heuristics in different state-of-the-art solvers.
منابع مشابه
Primal MINLP Heuristics in a Nutshell
Primal heuristics are an important component of state-of-the-art codes for mixed integer nonlinear programming (MINLP). In this article we give a compact overview of primal heuristics for MINLP that have been suggested in the literature of recent years. We sketch the fundamental concepts of different classes of heuristics and discuss specific implementations. A brief computational experiment sh...
متن کاملA Center-Cut Algorithm for Quickly Obtaining Feasible Solutions and Solving Convex MINLP Problems
Here we present a center-cut algorithm for convex mixed-integer nonlinear programming (MINLP) that can either be used as a primal heuristic or as a deterministic solution technique. Like many other algorithms for convex MINLP, the center-cut algorithm constructs a linear approximation of the original problem. The main idea of the algorithm is to use the linear approximation differently in order...
متن کاملPivot-and-Fix; A Mixed Integer Programming Primal Heuristic
Pivot-and-Fix, a new primal heuristic for finding feasible solutions for mixed integer programming (MIP) problems is presented in this paper. Pivot-and-Fixtries to explore potentially promising extreme points of the polyhedron of the problem and by forming smaller serach trees looks for integer feasible solutions. Computational results show that this heuristic could help MIP solvers to perform ...
متن کاملStructure-based primal heuristics for mixed integer programming
Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They help to reach optimality faster and provide good feasible solutions early in the solving process. In this paper, we present two new primal heuristics which take into account global structures available within MIP solvers to construct feasible solutions at the beginning of the solving process. These he...
متن کاملA Primal Heuristic for MINLP based on Dual Information
We present a novel heuristic algorithm to identify feasible solutions of a mixed-integer nonlinear programming problem arising in natural gas transportation: the selection of new pipelines to enhance the network’s capacity to a desired level in a cost-efficient way. We solve this problem in a linear programming based branch-and-cut approach, where we deal with the nonlinearities by linear outer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program.
دوره 144 شماره
صفحات -
تاریخ انتشار 2014